Synthesis of Certain 1,2,4-Thiadiazole Nucleosides

Ganapathi R. Revankar* and Roland K. Robins

1CN Pharmaceuticals, Inc., Nucleic Acid Research Institute 2727 Campus Drive, Irvine, California 92715

Received October 20, 1975

Sir:

The broad spectrum antiviral activity of the synthetic nucleoside 1-β-D-rib of uranosyl-1,2,4-triazole-3-carbox-amide (1) has generated considerable interest in the chemical synthesis of nucleosides of five-membered heterocyclic ring systems. The isosteric relationship between 1,2,4-triazole and 1,2,4-thiadiazole suggested (2) the synthesis of pyrimidine nucleoside analogs of the 1,2,4-thiadiazole ring systems. We now wish to report the first chemical synthesis of 5-amino-2-(β-D-ribofuranosyl)-1,2,4-thiadiazol-3-one (7), which represents a new class of cytidine analog.

The most frequently encountered procedure, originally developed by Kühle and co-workers (3) for the synthesis of 2-substituted-5-chloro-1,2,4-thiadiazol-3-ones, involves the reaction of an alkyloxymethyliminochloromethanesulfenyl chloride with isocyanates and was employed in an attempt to obtain 7. Thus, 2,3,5-tri-O-benzoyl-β-D-ribofuranosyl isocyanate (4) (1a, 1 equivalent) was treated with methoxymethylisothiocyanate (1 equivalent) in anhydrous carbon tetrachloride containing dry chlorine (1 equivalent) at 0-10° for 15 hours to obtain crystalline 5-chloro-2-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1,2,4-thiadiazol-3one (4a) in 64.5% yield, m.p. 145-146° (from ethanol); ¹H nmr (DMSO- d_6): δ 5.85 (d, J = 3.5 Hz, C_1 'H); uv λ max (ethanol): 235 nm (ϵ , 3,900), 280 (1,250). Treatment of 4a with methanolic or ethanolic ammonia or with sodium alkoxide under various conditions afforded a deep blue reaction mixture from which, in several instances $1-\beta$ -D-ribofuranosylurea and elemental sulfur were isolated. Likewise, the reaction of 2,3,5-tri-O-acetyl-\beta-D-ribofuranosyl isocyanate (5) (1b) with methoxymethylisothiocyanate under similar conditions furnished syrupy 4b. Attempts to deacylate 4b with either methanolic ammonia/ hydrogen chloride or with sodium methoxide resulted in an intractable reaction mixture from which no desired product was isolated.

Because of the lability of **4a** and **4b**, particularly to acid and base, the synthesis of **7** was approached by an alternate route. 5-Amino-1,2,4-thiadiazol-3-one (6) (1 equivalent) was silylated with hexamethyldisilazane according to the general procedure of Wittenburg (7). The crystalline

bistrimethylsilyl derivative (2) thus obtained was then treated with I equivalent of 1,2,3,5-tetra-O-acetyl-β-Dribofuranose (3) in the presence of 1.4 equivalent of stannic chloride (8) in 1,2-dichloroethane at 25° for 5 hours which, after purification by silica gel column chromatography, provided a single, crystalline nucleoside product, identified as 5-acetamido-2-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-1,2, 4-thiadiazol-3-one (5) in 60% yield, m.p. 229-230° (ethanol); $[\alpha]_{D}^{25}$ 41.5° (c 1, ethanol); ¹H nmr (deuteriochloroform): δ 2.17 (d, 9H, -OAc), 2.56 (s, 3H, -NAc), 6.06 (d, J = 4.5 Hz, C_1 'H); uv λ max (pH 1): 236 nm (ϵ , 12,000), 275 sh (4,000); (pH 7 and 11): 256 nm (ϵ , 13,000), 278 sh (6,500). The ¹³C nmr spectrum is also in agreement with this structure. The formation of 5 is of particular interest since the 5-amino group of the aglycon becomes acylated under the conditions employed. Although the determination of the site of ribosylation at N-2 is favorable on the basis of conventional valence bond considerations, the large upfield ¹³ C chemical shift of C-3 in **5** (δ 162.3 ppm) as compared to that of the base anion (δ 176.5 ppm) furnished (9) strong support for the ribosylation site as N-2.

Selective deacylation of the secondary O-acetyl groups of 5 with either methanolic ammonia (10) at 0°, or with catalytic amount of sodium methoxide in methanol (pH 8.5) at room temperature for 30 minutes followed by silica gel column chromatography (to separate the minor product 8) provided crystalline 5-acetamido-2-(5-O-acetyl-β-Dribofuranosyl)-1,2,4-thiadiazol-3-one (6) in 58% yield, m.p. 212-213° (25% aqueous ethanol); $[\alpha]_{\mathbf{D}}^{25}$ -30.1° (c 1, water); ¹H nmr (DMSO-d₆): δ 2.13 (s, 3H, -OAc), 2.28 (s, 3H, -NAe), 5.70 (d, J = 4.5 Hz, C_1 'H); uv λ max (pH 1): 235 nm (ϵ , 8,300), 270 sh (3,500); (pH 7 and 11): 255 nm $(\epsilon, 8,800)$, 276 sh (4,700). Further saponification of **6** or the direct deacylation of 5 with sodium methoxide (pH 8.5 for 2.5 hours at 28°) followed by column chromatography on silica gel provided 5-acetamido-2-(β-D-ribofuranosyl)-1,2,4-thiadiazol-3-one (8) in 67% yield, m.p. 202-203° dec., (25% aqueous ethanol); $[\alpha]_{D}^{25}$ -50.1° (c 1, water); ¹H nmr (DMSO- d_6): δ 2.28 (s, 3H, -NAc), 5.65 (d, J = 5.0 Hz, $C_1'H$); uv λ max (pH 1): 235 nm (ϵ , 10,600), 275 (3,500); (pH 7): 254 nm (ϵ , 9,900), 277 sh (5,400); (pH 11): 254 nm (ϵ , 12,700), 277 sh (5,900). Isopropylidenation of 8 with 2,2-dimethoxypropane in the presence of perchloric acid in acetone gave 5-acetamido-2-(2,3-O-isopropylidene-β-D-ribofuranosyl)-1,2,4-thiadiazol-3-one (9) in quantitative yield, m.p. 220-221° dec., (aqueous methanol). The $^1\mathrm{H}$ nmr spectrum of 9 in DMSO- d_6 revealed a doublet centered at δ 5.76 with a J_{1.2} of 3.0 Hz indicating (11) the β -configuration. The spectrum also revealed the difference in proton chemical shifts between the methyl signals of isopropylidene group to be 0.19 ppm, a difference characteristic of the β -configuration (12). Thus, the β -configuration for 9 and hence 5, 6, 7 and 8 were assigned unequivocally.

Prolonged treatment of 8 or 5 with sodium methoxide in methanol (pH 8.5 to 9.0 at 30°) furnished a 48% yield of 5-amino-2-(β -D-ribofuranosyl)-1,2,4-thiadiazol-3-one (7), m.p. $> 240^{\circ}$ dec., (aqueous ethanol); ¹ H nmr (DMSO- d_6):

δ 5.63 (d, J = 4.5 Hz, C_1 'H); uv λ max (pH 1): 220 nm (ϵ , 14,950), 273 (5,000); (pH 7): 220 nm (ϵ , 13,950), 255 (6,250); (pH 11): 230 nm (ϵ , 11,200), 278 sh (7,500).

All new compounds gave proper elemental analyses and the spectral data are in agreement with the structures assigned.

Acknowledgment.

The authors wish to thank Dr. Richard L. Tolman for helpful discussions and to Dr. Phoebe Dea for providing the ¹³C nmr data.

REFERENCES AND NOTES

- (1a) R. W. Sidwell, J. H. Huffman, G. P. Khare, L. B. Allen, J. T. Witkowski, and R. K. Robins, *Science*, 177, 705 (1972); (b) J. T. Witkowski, R. K. Robins, R. W. Sidwell, and L. N. Simon, *J. Med. Chem.*, 15, 1150 (1972).
- (2) J. T. Witkowski and R. K. Robins, J. Org. Chem., 35, 2635 (1970).
- (3) G. Zumach, H. Holtschmidt, and E. Kühle, German Patent 1,907,116 (Sept. 1970).
- (4) T. Ukita, A. Hamada, and M. Yoshida, Chem. Pharm. Bull., 12, 454 (1964).
- (5) A. Piskala and F. Sorm, Collect. Czech. Chem. Commun., 29, 2060 (1964).
- (6) Personal communication from Prof. J. Goerdeler, University of Cologne, West Germany.
 - (7) E. Wittenburg, Z. Chem., 4, 303 (1964).
- (8a) U. Niedballa and H. Vorbrüggen, Angew. Chem. Int. Ed. Engl., 9, 461 (1970); (b) U. Niedballa and H. Vorbrüggen, J. Org. Chem., 36, 3672 (1974).
- (9) G. P. Kreishman, J. T. Witkowski, R. K. Robins, and M. P. Schweizer, J. Am. Chem. Soc., 94, 5894 (1972).
- (10a) J. A. Montgomery and K. Hewson, *J. Heterocyclic Chem.*, 7,443 (1970); (b) H. P. Albrecht, D. P. Repke, and J. G. Moffatt, *J. Org. Chem.*, 38, 1836 (1973).
- (11) L. B. Townsend, "Synthetic Procedures in Nucleic Acid Chemistry," Vol. II, Zorbach and Tipson, Eds., Chapter 7, Wiley-Interscience, New York, N. Y.
- (12a) J. L. Imbach, J. L. Barascut, B. L. Kam, B. Rayner, C. Tamby, and C. Tapiero, J. Heterocyclic Chem., 10, 1069 (1973); (b) J. L. Imbach, J. L. Barascut, B. L. Kam, and C. Tapiero, Tetrahedron Letters, 129 (1974).